Transcriptional profiling revealed impairment of early brain development in
hiPSC-derived models of Alexander disease
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Introduction

Alexander disease (AxD) is a neurodegenerative
disorder caused by mutations in astrocyte
intermediate filament protein GFAP. Effects of this
mutation can be studied on the human genetic
background using models derived from human
induced pluripotent stem cells (hiPSCs).
Furthermore, such models allow for studying
developmental aspect of the GFAP mutations, which
has not been addressed before. Here, we used RNA
sequencing methods to investigate cell type
composition and transcriptional changes resulting
from a single point GFAP mutation in 2D co-cultures
of neurons and astrocytes and in brain organoids.
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Results

1) Co-cultures of astrocytes and neurons

2) 165-D old cerebral organoids
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Figure 2: Cerebral organoids contained a variety of cell types, which were differentially
represented between conditions. While astrocytes were found almost exclusively in controls,
pancreatic-like and mesoderm-derived cells were enriched in AxD (A, B). DEA of radial glia
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Figure 1: Populations of induced astrocytes, neurons, and precursors were identified in the dataset (A).
The precursor cluster was more abundant in GFAP mutation-containing co-cultures (B). This cluster
contained cells induced to become astrocytes, which did not fully differentiate. They upregulated adhesion
and cytoskeletal molecules, and downregulated neural tissue development (C). DEA of the iA cluster

showed downregulation of neuronal
pancreatic-like markers (C). Results from GO enrichment analysis suggested dysregulation of

markers and upregulation of outer radial glia and

membrane components and neural tissue development (D).

4) Stressed early cerebral organoids
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showed downregulation of astrocyte markers (GFAP, S100B) suggesting their lower differentation status in A B
W_A and AxD co-cultures, and upregulation of metallothioneins implicating an increased level of stress (C).
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Figure 3: Using the Lancaster protocol, embryoid bodies were grown in separate wells for the first few divalent inorganic cation homeostasis ®
days of cultivation. PCA showed a significant delay in differentiation of the AxD samples (A). DEGs were Cj:i'::g:‘l:‘;; ¢ :
identified already at day 3 and their number increased in time (B). The identified changes included homotypic cell-cell adhesion °
downregulation of neuroectodermal markers, dysregulation of major developmental pathways, membrane- ameboidal-type cell migration ®
related molecules, and increased stress in AxD embryoid bodies across time points (C). cadhotty bindng —1 — 1@

Abbreviations: iA - induced astrocytes, iN - induced neurons, GO - Gene Ontology, DEA - differential expression analysis, ECM - extracellular matrix,

PC1: 41% variance
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Figure 4: Embryoid bodies cultivated in Aggrewells were
exposed to high density-induced mechanical stress and
showed an aberrant phenotype (A). PCA implicated diverging
differentiation paths of control and AxD organoids (B). DEA
and GO enrichment analysis revealed increased stress levels
at day 3, upregulation of membrane, cytoskeleton, and ECM
components, and markers of mesoderm-derived cell types.
Neural tissue development was downregulated (C). Protein-
protein interaction network of day 3 DEGs showed four hub
genes including pB-catenin, directly linked with actin,
mechanosensing, adhesion, and WNT related genes (D).

OPC - oligodendrocyte progenitor cells, PCA - principal component analysis, DEGs - differentially expressed genes

Conclusions

= all models consistently showed differentiation impairment

= astrocytes did not fully differentiate

= the changes were apparent already at embryoid body stage

= mechanical stress in GFAP mutant samples affected major developmental
signaling and lineage commitment

GFAP mutation altered mechanical properties of differentiating cells
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